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Part I: Learning interpretable patterns for
knowledge discovery and inference
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Association Rule Mining
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Association Rule Mining

bell brown foul woods yes
convex brown none woods no
convex brown none woods no
convex brown none woods no
bell red foul urban yes
convex brown none woods no
flat brown almond woods no
convex brown none woods no

Association rule examples:

cap-shape(bell)—poisonous(yes)
cap-color(brown) /\ poisonous(no)— habitat(woods)

Patterns/rules can also include: negations,
disjunctions, existential quantifiers ...
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Association Rule Mining - Positioning

nature > nature machine intelligence > perspectives > article

Perspective = Published: 13 May 2019
Stop explaining black box machine learning models for

high stakes decisions and use interpretable models
instead

Cynthia Rudin &

Nature Machine Intelligence 1,206-215 (2019) | Cite this article

93k Accesses | 7299 Citations | 538 Altmetric | Metrics

© A preprint version of the article is available at arXiv.

Relevance of rule learning in current Al

Knowledge Discovery

Find non-trivial, implicit,  previously
unknown and potentially useful (interesting)
patterns in the data. Think of medical uses ...

Interpretable Inference

Interpretable by design ML models rather
than probabilistic explanation of black box
models.

Bonus: inference with rules is the fastest!
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Association Rule Mining
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R1 = cap-shape(convex) — cap-color(brown)

support(R1) = P(cap-shape=convex /\ cap-color=brown)
=5/8 = 62.5%.

confidence(R1) = P(cap-color=brown | cap-shape=convex)
=5/5 = 100%.
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Association Rule Mining

bell brown foul woods yes
convex brown none woods no
convex brown none woods no
convex brown none woods no
bell red foul urban yes
convex brown none woods no
flat brown almond woods no
convex brown none woods no

Do we optimize for high values?

High support—Trends in the data

support((cap-color=brown — habitat=woods))
=6/8 = 75%.

Low support — anomalies, minority classes ...
support(cap-shape(bell) — poisonous(yes))
=2/8 = 25%.
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Association Rule Mining

cap-shape cap-color odor habitat poisonous
bell brown foul woods yes
convex brown none woods no
convex brown none woods no
convex brown none woods no
bell red foul urban yes
convex brown none woods no
flat brown almond woods no
convex brown none woods no

Do we optimize for high values?

High confidence x strong association
R3 = cap-shape(convex) — habitat(woods)
confidence(R3) = 100%!

But ...
support(habitat(woods)) = ~85%.
Many other feature will imply habitat(woods) anyways.

cap-color(brown) — habitat(woods) 100% confidence
odor(almond) — habitat(woods) 100% confidence
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Association Rule Mining

bell brown foul woods yes
convex brown none woods no
convex brown none woods no
convex brown none woods no
bell red foul urban yes
convex brown none woods no
flat brown almond woods no
convex brown none woods no

Association strength:

confidence(A — C) — confidence(A' — C)

max(confidence(A — C), confidence(A' — C))

range [-1, 1].
-1: dissociation, 0: independence, 1: association.

Assoc_strength(habitat(woods) — cap-color(brown))
=(1-0)/1=100%.

Again, one very common pattern implies another
common pattern. Not that interesting!

10



UNIVERSITEIT VAN AMSTERDAM
X

Association Rule Mining

Key takeaway
— We define what is a “good” pattern and often require a hypothesis over the data.

Developing new “interestingness” functions is a prominent research direction in
knowledge discovery.
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Association Rule Mining (Apriori)

bell brown foul woods yes
convex brown none woods no
convex brown none woods no
convex brown none woods no
bell red foul urban yes
convex brown none woods no
flat brown almond woods no
convex brown none woods no

How to find such patterns?

— Given minimum support and confidence
thresholds, find all such patterns that satisfy
the thresholds.

Apriori (1994) is still the most commonly
used tabular rule miner today!!

Agrawal. R. Srikant. and Ramakrishnan Srikant. "R. Fast algorithms for mining association rules." Proceedings of the 20th international conference on very large data bases. vidb. 1994.
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Association Rule Mining (Apriori)

bell brown foul woods yes cap-shape(bell)
convex brown none woods no cap-shape(convex)
convex brown none woods no cap-shape(flat)
convex brown none woods no
bell red foul urban yes
convex brown none woods no
cap-shape(convex),
flat brown almond woods no cap-color(brown)
convex brown none woods no

Minimum support threshold = 50%

Minimum confidence threshold = 80% Step 1: Gradually find item(sets) that satisfies the min. support threshold
- 0

Agrawal. R. Srikant, and Ramakrishnan Srikant. "R. Fast algorithms for mining association rules." Proceedings of the 20th international conference on very large data bases. vldb. 1994.
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Association Rule Mining (Apriori)

cap-shape(convex),
cap-color(brown)

bell brown foul woods yes
convex brown none woods no
convex brown none woods no
convex brown none woods no
bell red foul urban yes
convex brown none woods no
flat brown almond woods no
convex brown none woods no

Minimum support threshold = 50%
Minimum confidence threshold = 80%

cap-shape(convex) — cap-color(brown), 100% conf.

cap-color(brown) — cap-shape(convex), ~71% conf.

Step 2: Create combinations of implications

Agrawal. R. Srikant, and Ramakrishnan Srikant. "R. Fast algorithms for mining association rules." Proceedings of the 20th international conference on very large data bases. vldb. 1994.


https://www.columbia.edu/~rd2537/docu/apriori(abstract).pdf
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Association Rule Mining - Research Problems

Research problems

1. Rule explosion: Combinatorial explosion in the number of rules based on columns

2. Interpretability: A table of 20 columns with max antecedent length of 3 can
produce C(20,1)x3! + C(20,2)x32 + C(20,3)x33 ~ 1.85 million rules!

How to find a small number of interesting patterns fast?
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Part II: Solving association rule mining with a
neurosymbolic approach

16



UNIVERSITEIT VAN AMSTERDAM
X

Our Approach - Aerial

Steps:
1. Use an under-complete Autoencoder to create a neural representation of the data.
2. Extract association rules from the neural representation.

Trained model

(One-hot)
Encoding : 2

Data preparation and training Rule Extraction
i e e T i i e i ] : Create and mark
Tabular Data Transactions i Vectorize :  (Training) QHfler-complete {11! testvectors
i SRR : : Denoising AE AR
it 179875 00001 O O ;

Check for
implications
of test vectors
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Feature List antecedents: ¢ ant_sim: 7, cons_sim:7.

E. Karabulut. P. Groth, V. Degeler. Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasonin
volume 284 of Proceedings of Machine Learning Research, PMLR. 2025. pp. 565-588.
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Aerial - Rule Extraction (Step 2)

E

odor = {creosote, fishy, foul}, class = {edible, poisonous} 7, = 0.5, 7. = 0.8

initialize test vector . Trained Autoencoder output vector
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. Karabulut. P. Groth. V. Degeler, Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasonin

volume 284 of Proceedings of Machine Learning Research, PMLR. 2025, pp. 565-588.
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Scalable Rule ‘Learning’ with Aerial
Why this works?

1. No counting co-occurrences!
— 1000s of times faster execution time on large tables.
Successful reconstruction necessitates/implies strong associations!

Small model: 2-3 layers of encoder and decoder for mid-sized tables (~100
columns, <100.000 rows).

(OV)

E. Karabulut, P. Groth, V. Degeler, Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasoning,

volume 284 of Proceedings of Machine Learning Research, PMLR. 2025, pp. 565-588.
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Scalable Rule ‘Learning’ with Aerial

..................................................................................
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Figure 2: Boxology [van Bekkum et al., 2021] diagram of neurosymbolic ARM approaches such as Aerial+: i) a neural model of
data (i.e., tabular data) is learned, ii) an algorithm (symbolic) infers rules (symbols) from the model using hypotheses (symbols, as in
test vectors of Aerial+).

E. Karabulut, D. Daza, P. Groth and V. Degeler. "Discovering Association Rules in High-Dimensional Small Tabular Data". In ANSyA'25: 1st International Workshop on Advanced
Neuro-Symbolic Applications. co-located with 28th European Conference on Artificial Intelligence (ECAI 2025).

20
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Scalable Rule ‘Learning’ with Aerial

Successful reconstruction necessitates/implies strong associations!

cap-shape cap-color odor habitat poisonous EnCOding ‘habitat ( WOOdS ) — X won’t help
reconstructing the data!
bell brown foul woods yes
convex brown none woods no Because habitat(woods) 1s there in the data
convex brown none | woods o almost always anyways. Knowing that won’t
e . . oods - help reconstructing any other data point!
bell red foul urban yes
convex brown none WOOdS no
flat brown almond woods no
comvex brown e oods N Redundant rules are eliminated by design!

E. Karabulut, P. Groth, V. Degeler. Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasoning
volume 284 of Proceedings of Machine Learning Research, PMLR. 2025. pp. 565-588.
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Aerial - Quantitative Insights

Linear O(n) time in training, polynomial O(k***) time in rule extraction, for k features and a antecedents.

Algorithm 1: Aerial+’s rule extraction algorithm from a trained autoencoder
Input: Trained autoencoder: AE, max antecedents: a, similarity thresholds 7, 7.
Output: Extracted rules R

1 R« 0, F < AE.input_feature_categories;

2 foreach i < 1to a do

3 | c«(%);

4 foreach S € C do

5 v( + UniformProbability VectorPerFeature(F);
6 V <+ MarkFeatures(.S, vg)

7 foreach v € V do

8 p < AE(V);

9 if minps < 7, then

Fes

10 S.low_support < True;

11 continue with the next v;

12 foreach f € 7\ S do

13 | ifpy>7.thenR — RU{(S— f)};
14 F « {f € F| f.low_support = False};
15 Return R;

E. Karabulut., P. Groth, V. Degeler, Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasoning.
volume 284 of Proceedings of Machine Learning Research, PMLR. 2025, pp. 565-588.
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Aerial - Quantitative Insights

A small number of high quality rules with full data coverage!

Algorithm #Rules Time (s) Cov. Support Conf. Algorithm #Rules Time (s) Cov. Support Conf.

Congressional Voting Records

Breast Cancer

BAT 1913 208 1 0.06 0.45 BAT 787.1 162.18 1 0.07 0.41
GW 2542 186 1 0.05 048 GW 1584 129.18 1 0.08 0.42
sC 7 186 0.46 0.01 043 SC 33.6 137.66 1 0.03  0.27
FSS 10087 272 1 0.01 0.71 FSS 6451.6  225.71 1 0.02 0.36
FP-G | HMine 1764 0.09|0.04 1 0.29 0.88 FP-G | HMine 94 0.010.01 1 0.34 0.87
ARM-AE 347 0.21 0.03 0.23 045 ARM-AE 131 0.09 0.01 0.19 0.27
Aerial+ 149 0.25 1 0.32 0.95 Aerial+ 50 0.19 1 0.39 0.86
Mushroom Chess
BAT 1377.2 225.57 1 0.1 0.62 BAT 2905.9 235.34 i 0.17 0.64
GW 1924.1  184.56 1 0.11 063 GW 5605.25  255.56 1 0.31  0.65
SC 1.33 281.84 0.07 0.02 048 SC 1 545.71 0 0 0.7
FSS 794.9 352.99 1 0.04 0.38 FSS 32.75 380.73 0.4 0 0.36
FP-G | HMine 1180 0.1]0.07 1 043 0.95 FP-G | HMine 30087 12.43|0.7 1 0.46  0.93
ARM-AE 390 0.33 0 0.22 0.23 ARM-AE 22052 26.98 0.02 039 0.54
Aerial+ 321 0.38 i | 0.44 0.96 Aerial+4 16522 0.22 it 0.45 0.95
Spambase

BAT 0 424 No rules found

GW 0 508 No rules found

SC 0 643 No rules found

FSS 0 677 No rules found

FP-G | HMine 125223 214|214 1 0.64 0.92

ARM-AE 85327 254 0.03 0.31 0.38

Aerial+4 43996 1.92 1 0.62 0.97

E. Karabulut., P. Groth, V. Degeler, Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasoning.
volume 284 of Proceedings of Machine Learning Research, PMLR. 2025, pp. 565-588.


https://proceedings.mlr.press/v284/karabulut25a.html
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Aerial - Quantitative Insights

Small number of rules carry equal or higher predictive power as exhaustive mining!

Dataset Algorithm # Rules or Items Accuracy Exec. Time (s)
Exhaustive | Aerial+ Exhaustive | Aerial+ Exhaustive | Aerial+
Congressional CBA 3437 | 1495 91.91 | 92.66 0.34 | 0.14
Voting BRL 2547 | 57 96.97 | 96.97 15.37 | 9.69
Records ~CORELS 4553 | 61 96.97 | 96.97 3.04 | 0.17
CBA 27800 | 2785 99.82 | 99.82 1.75 | 1.30
Mushroom BRL 5093 | 493 99.87 | 99.82 244 | 167
CORELS 23271 | 335 90.14 | 99.04 61| 2
Riciit CBA 695 | 601 66.42 | 71.13 0.08 | 0.28
Cancer BRL 2047 | 290 71.13 | 71.46 16.82 | 14.5
CORELS 2047 | 369 73.69 | 75.82 1.42 | 0.40
CBA 49775 | 34490 94.02 | 93.86 24.31 | 6.24
Chess BRL 19312 | 1518 96.21 | 95.93 321|119
CORELS 37104 | 837 81.1 | 93.71 106 | 3.87
CBA 125223 | 33418 84.5 | 85.42 23.87 | 7.56
Spambase BRL 37626 | 5190 72.78 | 84.93 1169 | 431
CORELS 275003 | 1409 85.37 | 87.28 1258 | 5.23

E. Karabulut., P. Groth, V. Degeler, Neurosymbolic association rule mining from tabular data. in: Proceedings of The 19th International Conference on Neurosymbolic Learning and Reasoning.
volume 284 of Proceedings of Machine Learning Research, PMLR. 2025, pp. 565-588.
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PyAerial

0 README &3 MIT license V4

pyaerial: scalable association rule mining

python 3.9,3.10,3.11,3.12 | pypi v1.0.24 (o X Pl last commit |december 2025
Ubuntu 2408 155 | macOS 'Monterey 12.6.7 | DOI | 10.5281/zenodo.17795656

#h Install | ’ Quick Start | .~ Features | & Documentation | |- Cite | @ Contribute | J® License

PyAerial is a Python implementation of the Aerial scalable neurosymbolic association rule miner for tabular
data. It utilizes an under-complete denoising Autoencoder to learn a compact representation of tabular data,
and extracts a concise set of high-quality association rules with full data coverage.

Glthub https://github. com/DlTEC-prO]ect/pyaerlal


https://www.sciencedirect.com/science/article/pii/S2352711025003073
https://github.com/DiTEC-project/pyaerial
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PyAerial

InSta"atlon from aerial import model, rule_extraction, rule_quality rE]
from ucimlrepo import fetch_ucirepo
You can easily install pyaerial using pip: - 3
# load a categorical tabular dataset from the UCI ML repository
breast_cancer = fetch_ucirepo(id=14).data.features
pip install pyaerial
# train an autoencoder on the loaded table
trained_autoencoder = model.train(breast_cancer, device="cuda")

# extract association rules from the autoencoder
association_rules = rule_extraction.generate_rules(trained_autoencoder)

# calculate rule quality statistics (support, confidence, zhangs metric) for each rule

if len(association_rules) > 0:
stats, association_rules = rule_quality.calculate_rule_stats(association_rules, trained_aut
print(stats, association_rules[:1])

Features: ARM with item constraints, classification rules, visualizations ...

E. Karabulut. P. Groth. and V. Degeler. "Pyaerial: Scalable association rule mining from tabular data". SoftwareX., 31:102341, 2025. ISSN 2352-7110.
Github: https://github.com/DiTEC-project/pyaerial
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PyAerial
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Reconstruction success implies associations!
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Part I11: Using Prior/Background Knowledge
for Knowledge Discovery



UNIVERSITEIT VAN AMSTERDAM
X

Incorporating Back. Knowledge/Context

Tables do not exists in 1solation.

D time v|123value ~ I aoc type 'I % name ¥
2017-12-31 23:30:00.000 187.2 demand s_Junction_2
2017-12-31 23:30:00.000 3,981.6 flow s_Pipe_1
2017-12-31 23:00:00.000 4,406.4 flow s_Pipe_1
2017-12-31 23:00:00.000 205.2 demand s_Junction_2
2017-12-31 22:30:00.000 4,791.6 flow s_Pipe_1
2017-12-31 22:30:00.000 205.2 demand s_Junction_2
2017-12-31 22:00:00.000 212.4 demand s_Junction_2
2017-12-31 22:00:00.000 5,173.2 flow s_Pipe_1
2017-12-31 21:30:00.000 5,508 Fflow s_Pipe_1
2017-12-31 21:30:00.000 270 demand s_Junction_2

Sensor measurements table

rdfitype rdf:type

1.060916e+00

wdn:Junction_2
wdn:hasStartNode

wadn:Pipe_1 wdn:length
1.142298e+02
wdn:rougl

wdn:WaterPressureSensor_1 susd;observes wdn:WaterPressure
ssn:hasSubSystem =
rdf:type
=|j 7.099964¢-02 '

wdn:diameter

wdn:baseDemand
wdn:elevation

wdn:hasEndNode

rdf:type

wdn:head

wdn:Reservoir sosa:Sensor

wilistalis 1.194946e+02
rdf:type
ssn:hasSubSystem @
wdn:WaterFlowSensor_1 505a:0bserves =|| wdn:WaterFlow '

Knowledge Graph

Proceedings. Vol 1.2018.
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Semantic Association Rules

Trained model

ml, m! : Semantic
1% gI_tes Vo -

) .+ Association Rules
msl Mgy, on !

Check for
implications

Kragipdee’aEp ; of test vectors

antecedents: a similarity: 7

Numerical association rules: sensorl.value > 18 /\ sensorl.value < 20—sensor2.value > 20 /\
sensor2.value <22

Semantic association rules: type(sl, WP) /\ type(pl, Pipe) /\ placed in(sl, pl) /\ pl.diameter > A1 /\

sl.value > 18 A sl.value <20 — type(s2, WP) A type(j1, Junction) /\ placed in(s2, j1) /\ connected(jl,
pl) A s2.value >20 /\ s2.value <22

Erkan Karabulut, Paul Groth. and Victoria Degeler. "Learning Semantic Association Rules from Internet of Things Data". Neurosymbolic Artificial Intelligence, 2025:1.

doi:10.1177/29498732251377518.
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Semantic Association Rules - Insights

Same results as before:

- Concise set of high-quality rules (as the # sensors increase) with full data coverage

- Better scalability, etc.

In addition: semantics enable learning more generalizable rules.

# Rules Support Rule Cov. Confidence
W-s | WOo-s  W-s | wo-s  W-s | wo-s w-s | wo-s
LeakDB
FP-Growth 103K 9K  0.41[0.19 04302 0.950.97
Aerial 554 25K 054|025 05903 0.911]0.87
L-Town
FP-Growth 25K | 5K 086|036 0.9]0.38 0.96 | 0.96
Aerial 1K | 2.5K 0.59]0.39 0.65]|0.45 0.911]0.88
LBNL
FP-Growth 7K | 2K 084073 0.85|0.75 0.9810.99
Aerial 73| 258 074065 0.74]066  1.0]0.99

Caveats: a naive approach, can not say yet that we learn ‘semantics’

Erkan Karabulut, Paul Groth. and Victoria Degeler. "Learning Semantic Association Rules from Internet of Things Data". Neurosymbolic Artificial Intelligence, 2025:1.

doi:10.1177/29498732251377518.
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Aerial in Low-Data Regime

Using neural networks has its downsides!

High-dimensional datasets with low number of samples (gene expression datasets,
rare disease datasets etc.)

Sample / Rule Gene_1 Gene_2 Gene_3 --- Gene_18107 Gene_18107

Sample_1 normal normal normal --- normal normal
Sample_2 normal normal high --- normal high
Sample_3 normal normal normal --- normal low
Rule_1 Gene2 (high) A Gene29 (high) — Genel4 (low)
Rule 2 Gene3 (high) A Gene45 (high) — Gene84 (high)

E. Karabulut, D. Daza, P. Groth and V. Degeler. "Discovering Association Rules in High-Dimensional Small Tabular Data". In ANSyA'25: 1st International Workshop on Advanced
Neuro-Symbolic Applications. co-located with 28th European Conference on Artificial Intelligence (ECAI 2025).
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Aerial in Low-Data Regime

Prior knowledge from tabular foundation models! Tabular Data: X € R Table Embeddings: I € R

A k.a., transfer learning for knowledge discovery. ,| Tabular
Foundation Model
Tabular Data: X € R™*¢ Table Embeddings: E € R™*% L T '
£ . Pre-training !
1
w 1 1
< [ 1
n [ 1
3 N Tabular s [ 1
5 Foundation Model = '
° '
w 8 > .
< S| 1 i
5 [ . ! 1
% E : O O : Objective: .
;g é : O O Lroj (X', E) =min (1 - cos(X/, E)) :
ol T & L 1
5 Aerial+'s Autoencoder §
g : ’ y B | s i g i S o 0
P 1 - O Aerial+'s Training
&l Iprioction]Actialt+Gt « (W, 57) e
éﬁlce ;égl > O O O . Aerial+'s Autoencoder
O o O O | New Objective:

O 3

Objectve: min (1 cos(%, £) ) @ @ | >0 O O min (e(¥) * u(%.5)})

E. Karabulut. D. Daza. P. Groth and V. Degeler. "Discovering Association Rules in High-Dimensional Small Tabular Data". In ANSyA'25: 1st International Workshop on Advanced
Neuro-Symbolic Applications, co-located with 28th European Conference on Artificial Intelligence (ECAT 2025).
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Aerial in Low-Data Regime

Even less rules with higher average quality!

Approach  #Rules ~Rule Coverage ~Support ~Confidence Data Coverage ~Zhang’s Metric Exec. Time (s)

Chondrosarcoma
Aerial+ 200 0.23 0.21 0.921 0.533 0.784 2.25
Aerial+WI 75 0.217 0.206 0.945 0.524 0.813 5.80
Aerial+DL 75 0.235 0.219 0.947 0.536 0.828 5.36
SmallCellLungCarcinoma
Aerial+ 1576 0.068 0.041 0.579 0.835 0.476 10.58
Aerial+WI 664 0.076 0.052 0.633 0.715 0.577 13.48
Aerial+DL 1338 0.070 0.044 0.597 0.816 0.513 18.23
NonSmallCellLungCarcinoma
Aerial+ 1620 0.059 0.035 0.584 0.823 0.554 18.03
Aerial+WI 978 0.078 0.057 0.663 0.698 0.639 28.67
Aerial+DL 1453 0.053 0.028 0.547 0.849 0.501 24.27
BreastCarcinoma
Aerial+ 1017 0.072 0.046 0.641 0.816 0.575 9.64
Aerial+WI 590 0.077 0.052 0.686 0.686 0.644 12.09
Aerial+DL 535 0.078 0.050 0.652 0.761 0.590 15.31
Melanoma
Aerial+ 1220 0.067 0.035 0.545 0.888 0.440 13.09
Aerial+WI 773 0.070 0.038 0.575 0.772 0.496 13.19
Aerial+DL 859 0.071 0.038 0.566 0.860 0.461 16.49

E. Karabulut, D. Daza, P. Groth and V. Degeler. "Discovering Association Rules in High-Dimensional Small Tabular Data". In ANSyA'25: 1st International Workshop on Advanced
Neuro-Symbolic Applications. co-located with 28th European Conference on Artificial Intelligence (ECAI 2025).
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Part IV: Tabular Foundation Models Can
Learn Association Rules
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TFMs Can Learn Rules Out-Of-The-box

Definition 2 (Conditional Probabilistic Model). Ler My be a

trained model that allows computing conditional queries of

the form

Fla | X). 3el, XEC1, (2)
interpreted as the probability estimated by the model that item
i holds given that all items in X are observed to hold.

Requirement 1 (Antecedent Validation). A model My pro-
vides a scoring function sy : 2! — [0,1], where sy(X)
quantifies how plausible the partial configuration X is under
the learned data distribution. An antecedent X is considered
valid if sg(X) > 14, for a user-specified threshold 7, € [0, 1].

Intuitively, this prevents the extraction of rules based on
highly unlikely or spurious combinations of feature values
(e.g., rare co-occurrences in the clinical data).

Requirement 2 (Consequent Extraction). Given a valid an-
tecedent X, the model allows computing conditional proba-
bilities Py(i | X) foralli € I\ X. An item i is accepted
as a consequent of X if Py(i | X) > 7, for a user-specified
threshold 7. € [0, 1].

Karabulut, Erkan, Daniel Daza, Paul Groth, Martijn C. Schut, and Victoria Degeler. "Tabular Foundation Models Can Learn Association Rules" (pre-print out soon).
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TFMs Can Learn Rules Out-Of-The-box

{ i, 12, s, f22} = {antivirals(yes), antivirals(no), class(live), class(die)}
7o =0.5,7.=0.8

fifffhf i fofh f iR
‘ ‘ ‘ ‘ L Probe| 1 | 0 05 05
a1 Matrix

”) 0| 1 05|05

S | U
0 | |
& T 0, Q,
] 10| |o5]|05
Sample Hepatitis Table X Y
\ Y : 0 1 0505
fll ff f;l J’c;z Context @
0.6 0.4 0.98/0.02 \_lfit(X, Y)
— @
0.4 0.6 079021 (5) . gatk?“'aﬁ/l ol :
oundation Moae predict([Ql, QZ])

P(J?ll ) > Ta Ap(j;l ) > 7., —> antivirals(yes) — class(live) @
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TFMs Can Learn Rules Out-Of-The-box

Algorithm #Rules Supp. Conf. Zhang Inter. Cov. Method #Rules Accuracy F1 Precision Recall
Small Tabular Datasets
Small Tabular Datasets
TabICL 616 8293 81.07 81.13 8293
TabICL 378 38 843 318 426 93.1 TabDPT 641 8222 8035 80.58 8222
TabPENv2.5 286 389 86.3 303 432 98.1 TabPENV2.5 657 8447 8275 83.02 84.47
TabDPT 204 366 829 262 409 1 Aerial+ 579  80.69 77.35 7651  80.69
Aerial+ 313 287 893 235 344 88.1 FP-G(03) 266 7972 7645 7584 79.72
FP-G (0.3) 430 424 898 236 48.6 99.7 ggg (83 ggi ;ggi g‘;?} ;‘jjg ;322
-G (0.2 2 gL : = 2. :
};gg(g'f) &8607 :‘;’3 3(1)'3 ';24 ‘;;l } FP-G (0.05) 2066  83.08 80.63 8142  83.08
-G (0.1) e A . 2 &4 FP-G (0.01) 13991 8328 80.58 81.16 83.28
Larger Tabular Datasets Larger Tabular Datasets
TabICL 11069 50.5 88.5 389 584 982 TabPFNv2.5 8719 8653 8574 86.15 86.53
TabPFNv2.5 12238 488 866 343 558 99.0 TabICL 8100 8651 8577 8616 8651
TabDPT 5177 458 85 364 529 983 Zab!)f 3(3)3; gggz 2‘6‘% ggif gggg
. o) bb) eria .05 & . o
25%133 ,76"51;8 5;);) g?"ls 55 5;';5 gg'g FP-G (03) 13454 8490 8436 8453 84.90
-G(0.3) 2 25, : FP-G(02) 14882 88.10 87.30 87.30 88.10
FP-G (0.2) 29211 43,5 914 252 504 99.6 FP-G (0.1) 19588 87.87 8650 8633 87.87
FP-G (0.1) 35376 35.6 916 244 41.6 1 FP-G (0.05) 44424 88.13 86.61 8634 88.13

FP-G (0.01) 59603  88.04 86.60 86.41 83.04

Table 2: Averages of rule quality metrics in percentage (%) o )
across 5 small and 5 larger datasets. Tabular foundation mod- Table 3: Predictive performance in percentage and rule
. arsia . . (CBA) or itemset (CORELS) size given in column two.

els can learn concise number association rules with higher : =t : X
G 3 5 TFMs achieve better predictive performance with a concise

association strength, interestingness on average, and full data number of rules in small tabular data, while being behind FP-

coverage, with slightly lower confidence scores (FP-G (x): G by only -1.5% despite FP-G’s rule explosion (FP-G (x) de-

refers to FP-Growth with x being min. support threshold). notes FP-Growth with minimum support threshold ).

Karabulut, Erkan, Daniel Daza, Paul Groth, Martijn C. Schut, and Victoria Degeler. "Tabular Foundation Models Can Learn Association Rules" (pre-print out soon).
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TFMs Can Learn Rules Out-Of-The-box
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Karabulut, Erkan, Daniel Daza, Paul Groth, Martijn C. Schut, and Victoria Degeler. "Tabular Foundation Models Can Learn Association Rules" (pre-print out soon).
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TFMs Can Learn Rules Out-Of-The-box

from ucimlrepo import fetch_ucirepo
from src.wrapper import TabProbe

# Load breast cancer dataset from UCI ML repository
dataset = fetch_ucirepo(id=14).data.features

# Mine rules with TabPFN

miner = TabProbe(method='tabicl', ant_similarity=0.5, cons_similarity=0.8)
rules = miner.mine_rules(dataset, metrics=["support", "confidence"])

Karabulut, Erkan, Daniel Daza, Paul Groth, Martijn C. Schut, and Victoria Degeler. "Tabular Foundation Models Can Learn Association Rules" (pre-print out soon).
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Prediction success implies associations!
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Conclusions

1. Rule learning for knowledge discovery and interpretable machine learning.

2. Reconstruction success implies associations.
a. Aerial helps learning a concise set of high-quality association rules with

full data coverage.

b. A concise set of rules still leads to equal or better predictive performance.
c. Orders of magnitude better scalability on large tables

3. Including background knowledge, context, prior knowledge 1s possible and still
an open question.

4. TFMs can learn association rules out-of-the-box.

a. Prediction success implies associations.
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